Filament or blob structures have been observed in all magnetic configurations with very similar features despite the difference in the magnetic geometry, and are believed to play an important role in convecting particles and energy towards the wall. Despite their different generation mechanism, turbulent structures and edge-localized mode (ELM) filaments share some common physical features. The electromagnetic effects on filament structures deserve particular interest, among others reasons for the implication they could have for ELM, related for instance to their dynamics in the transition region between closed and open field lines or to the possibility, at high beta regimes, of causing line bending which could enhance the interaction of blobs with the first wall. A direct characterization of the effects of active modification of the edge topology on EM turbulent filament structures is presented, comparing reversed field pinch and tokamak configurations. Measurements are obtained in the RFX-mod device, which allows operation in both configurations and with different equilibria. The RFX-mod experiment versatility is exploited also from the point of view of the active control of the edge magnetic topology, equipped with an advanced system for edge boundary feedback control. Three different case studies of actively controlled magnetic perturbations are shown, focusing on the filament interaction with local magnetic islands. High-frequency fluctuations, characterizing electrostatic and magnetic filament features, and the associated transport coefficients have been observed to be strongly affected by the island proximity and topology. © 2015 EURATOM.

Turbulent electromagnetic filaments in actively modulated toroidal plasma edge

Mazzi, A.;
2015-01-01

Abstract

Filament or blob structures have been observed in all magnetic configurations with very similar features despite the difference in the magnetic geometry, and are believed to play an important role in convecting particles and energy towards the wall. Despite their different generation mechanism, turbulent structures and edge-localized mode (ELM) filaments share some common physical features. The electromagnetic effects on filament structures deserve particular interest, among others reasons for the implication they could have for ELM, related for instance to their dynamics in the transition region between closed and open field lines or to the possibility, at high beta regimes, of causing line bending which could enhance the interaction of blobs with the first wall. A direct characterization of the effects of active modification of the edge topology on EM turbulent filament structures is presented, comparing reversed field pinch and tokamak configurations. Measurements are obtained in the RFX-mod device, which allows operation in both configurations and with different equilibria. The RFX-mod experiment versatility is exploited also from the point of view of the active control of the edge magnetic topology, equipped with an advanced system for edge boundary feedback control. Three different case studies of actively controlled magnetic perturbations are shown, focusing on the filament interaction with local magnetic islands. High-frequency fluctuations, characterizing electrostatic and magnetic filament features, and the associated transport coefficients have been observed to be strongly affected by the island proximity and topology. © 2015 EURATOM.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/321857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact