We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.

Time response in carbon nanotube/Si based photodetectors

Boscardin, M.;
2019-01-01

Abstract

We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/318804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact