The fifth-generation (5G) cellular networks will face the challenge of integrating the traditional broadband services with the Internet of Things (IoT), which is characterized by sporadic uplink transmissions of small data packets. Indeed, the access procedure of the previous generation cellular network (4G) is not able to support IoT traffic efficiently, because it requires a large amount of signaling for the connection setup before the actual data transmission. In this context, we introduce two innovative radio access protocols for sporadic transmissions of small data packets, which are suitable for 5G networks, because they provide a resource-efficient packet delivery exploiting a connectionless approach. The core of this paper resides in the derivation of an analytical framework to evaluate the performance of all the aforementioned protocols. The final goal is the comparison between 4G and 5G radio access solutions employing both our analytical framework and computer simulations. The performance evaluation results show the benefits of the protocols envisioned for 5G in terms of signaling overhead and access latency.

Comparison of Collision-Free and Contention-Based Radio Access Protocols for the Internet of Things

Centenaro, Marco;
2017-01-01

Abstract

The fifth-generation (5G) cellular networks will face the challenge of integrating the traditional broadband services with the Internet of Things (IoT), which is characterized by sporadic uplink transmissions of small data packets. Indeed, the access procedure of the previous generation cellular network (4G) is not able to support IoT traffic efficiently, because it requires a large amount of signaling for the connection setup before the actual data transmission. In this context, we introduce two innovative radio access protocols for sporadic transmissions of small data packets, which are suitable for 5G networks, because they provide a resource-efficient packet delivery exploiting a connectionless approach. The core of this paper resides in the derivation of an analytical framework to evaluate the performance of all the aforementioned protocols. The final goal is the comparison between 4G and 5G radio access solutions employing both our analytical framework and computer simulations. The performance evaluation results show the benefits of the protocols envisioned for 5G in terms of signaling overhead and access latency.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/318575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact