In most cases RGB and AGB stars with M< 2M⊙ destroy Li (which is instead synthesized trough electron-captures on 7Be). This occurs through the combined operation of mixing processes and proton captures, when H-burning operates close to the envelope. Observed Li abundances are however difficult to explain, as they cover a wide spread. Various uncertainties affect model attempts, but so far the largest one concerns the processes of bound and free e- captures on 7Be, hence its life-time, whose known estimates are valid only for solar conditions. RGB and AGB stages have temperatures and densities below the envelope covering a wide range and differing from solar by up to a factor of five for T and up to five orders of magnitudes for ρ, hence extrapolations are unreliable. Recently, we presented an estimate of the 7Be half-life based on a fully quantistic method that goes beyond the Debye-Huckel approximation. Here we discuss its consequences on Li nucleosynthesis in low mass AGB stars.

Lithium abundances in AGB stars and a new estimate for the7Be life-time

Simonucci, S;Taioli, S
2016-01-01

Abstract

In most cases RGB and AGB stars with M< 2M⊙ destroy Li (which is instead synthesized trough electron-captures on 7Be). This occurs through the combined operation of mixing processes and proton captures, when H-burning operates close to the envelope. Observed Li abundances are however difficult to explain, as they cover a wide spread. Various uncertainties affect model attempts, but so far the largest one concerns the processes of bound and free e- captures on 7Be, hence its life-time, whose known estimates are valid only for solar conditions. RGB and AGB stages have temperatures and densities below the envelope covering a wide range and differing from solar by up to a factor of five for T and up to five orders of magnitudes for ρ, hence extrapolations are unreliable. Recently, we presented an estimate of the 7Be half-life based on a fully quantistic method that goes beyond the Debye-Huckel approximation. Here we discuss its consequences on Li nucleosynthesis in low mass AGB stars.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/317390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact