Flexible electronics is rapidly evolving towards devices and circuits to enable numerous new applications. The high-performance, in terms of response speed, uniformity and reliability, remains a sticking point. The potential solutions for high-performance related challenges bring us back to the time-tested silicon based electronics. However, the changes in the response of silicon based devices due to bending related stresses is a concern, especially because there are no suitable models to predict this behavior. This also makes the circuit design a difficult task. This paper reports advances in this direction, through our research on bendable piezoelectric oxide semiconductor field effect transistor (POSFET) based touch sensors. The analytical model of POSFET, complimented with Verilog- A model, is presented to describe the device behavior under normal force in planar and stressed conditions. Further, dynamic readout circuit compensation of POSFET devices have been analyzed and compared with similar arrangement to reduce the piezoresistive effect under tensile and compressive stresses. This approach introduces a first step towards the systematic modeling of stress induced changes in device response. This systematic study will help realize high-performance bendable microsystems with integrated sensors and readout circuitry on ultra-thin chips (UTCs) needed in various applications, in particular, the electronic skin (e-skin).

Device Modelling for Bendable Piezoelectric FET-Based Touch Sensing System

L. Lorenzelli;R. Dahiya
2016-01-01

Abstract

Flexible electronics is rapidly evolving towards devices and circuits to enable numerous new applications. The high-performance, in terms of response speed, uniformity and reliability, remains a sticking point. The potential solutions for high-performance related challenges bring us back to the time-tested silicon based electronics. However, the changes in the response of silicon based devices due to bending related stresses is a concern, especially because there are no suitable models to predict this behavior. This also makes the circuit design a difficult task. This paper reports advances in this direction, through our research on bendable piezoelectric oxide semiconductor field effect transistor (POSFET) based touch sensors. The analytical model of POSFET, complimented with Verilog- A model, is presented to describe the device behavior under normal force in planar and stressed conditions. Further, dynamic readout circuit compensation of POSFET devices have been analyzed and compared with similar arrangement to reduce the piezoresistive effect under tensile and compressive stresses. This approach introduces a first step towards the systematic modeling of stress induced changes in device response. This systematic study will help realize high-performance bendable microsystems with integrated sensors and readout circuitry on ultra-thin chips (UTCs) needed in various applications, in particular, the electronic skin (e-skin).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/315910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact