Wireless mesh networks (WMN) typically employ mesh routers that are equipped with multiple radio interfaces to improve network capacity. The key aspect is to cleverly assign different channels (i.e., frequency bands) to each radio interface to form a WMN with minimum interference. The channel assignment must obey the constraints that the number of different channels assigned to a mesh router is at most the number of interfaces on the router, and the resultant mesh network is connected. This problem is known to be NP-hard. In this paper we propose a hybrid, interference and traffic aware channel assignment (ITACA) scheme that achieves good multi-hop path performance between every node and the designated gateway nodes in a multi-radio WMN network. ITACA addresses the scalability issue by routing traffic over low-interference, high-capacity links and by assigning operating channels in such a way to reduce both intra-flow and inter-flow interference. The proposed solution has been evaluated by means of both simulations and by implementing it over a real-world WMN testbed. Results demonstrate the validity of the proposed approach with performance increase as high as 111%.
Interference and Traffic Aware Channel Assignment in WiFi-based Wireless Mesh Networks
Roberto Riggio;T. Rasheed;Imrich Chlamtac
2011-01-01
Abstract
Wireless mesh networks (WMN) typically employ mesh routers that are equipped with multiple radio interfaces to improve network capacity. The key aspect is to cleverly assign different channels (i.e., frequency bands) to each radio interface to form a WMN with minimum interference. The channel assignment must obey the constraints that the number of different channels assigned to a mesh router is at most the number of interfaces on the router, and the resultant mesh network is connected. This problem is known to be NP-hard. In this paper we propose a hybrid, interference and traffic aware channel assignment (ITACA) scheme that achieves good multi-hop path performance between every node and the designated gateway nodes in a multi-radio WMN network. ITACA addresses the scalability issue by routing traffic over low-interference, high-capacity links and by assigning operating channels in such a way to reduce both intra-flow and inter-flow interference. The proposed solution has been evaluated by means of both simulations and by implementing it over a real-world WMN testbed. Results demonstrate the validity of the proposed approach with performance increase as high as 111%.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.