We derive asymptotic freedom and the SU(3) Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size) parameter s. The effective Hamiltonians Hs and the (regularized) canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
Asymptotic freedom in the Hamiltonian approach to binding of color
María Gómez-Rocha
2017-01-01
Abstract
We derive asymptotic freedom and the SU(3) Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size) parameter s. The effective Hamiltonians Hs and the (regularized) canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.