Safety and efficacy issues are associated with reprocessing of single-use electrosurgical pencils (EPs), requiring methods for assessing the reprocessing protocol before clinical reuse. This study aimed at monitoring the surface characteristics of single-use EPs subjected to multiple clinical use and in-hospital reprocessing. A total of 24 single-uselabeled EPs were divided in five test groups and one control group. The test groups were subjected to a different number of clinical uses, ranging from one to five. A multitechnique approach based on optical stereomicroscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was applied. The silicon coating of the tip was significantly reduced, and foreign bodies were occasionally found on reprocessed EPs. The amount of biological debris and chemical residuals increased with the number of reprocessing cycles in critical areas. The degradation temperature of the EP handle polymer showed a progressive significant reduction. Cable cord showed no modification after reprocessing. EP tip could undergo major surface modifications that can affect functionality. The efficacy of the reprocessing protocol in removing debris from the EP handle should be carefully assessed. Surface and thermal characteristics have to be considered for validating a reprocessing protocol of single-use labeled EP.

Surface and Thermal Characteristics of Single-Use Electrosurgical Pencils After Clinical Reuse and In-Hospital Reprocessing

Tessarolo, Francesco
Writing – Original Draft Preparation
;
Rigoni, Marta;Nollo, Giandomenico
2017-01-01

Abstract

Safety and efficacy issues are associated with reprocessing of single-use electrosurgical pencils (EPs), requiring methods for assessing the reprocessing protocol before clinical reuse. This study aimed at monitoring the surface characteristics of single-use EPs subjected to multiple clinical use and in-hospital reprocessing. A total of 24 single-uselabeled EPs were divided in five test groups and one control group. The test groups were subjected to a different number of clinical uses, ranging from one to five. A multitechnique approach based on optical stereomicroscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was applied. The silicon coating of the tip was significantly reduced, and foreign bodies were occasionally found on reprocessed EPs. The amount of biological debris and chemical residuals increased with the number of reprocessing cycles in critical areas. The degradation temperature of the EP handle polymer showed a progressive significant reduction. Cable cord showed no modification after reprocessing. EP tip could undergo major surface modifications that can affect functionality. The efficacy of the reprocessing protocol in removing debris from the EP handle should be carefully assessed. Surface and thermal characteristics have to be considered for validating a reprocessing protocol of single-use labeled EP.
File in questo prodotto:
File Dimensione Formato  
MED-17-1037_AuthorProof.pdf

non disponibili

Descrizione: Full paper
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/312019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact