Since its first discussions in literature during late ‘90s, RF-MEMS technology (i.e. Radio Frequency MicroElectroMechanical-Systems) has been showing uncommon potential in the realisation of high-performance and widely reconfigurable RF passives for radio and telecommunication systems. Nevertheless, against the most confident forecasts sparkling around the successful exploitation of RF-MEMS technology in mass-market applications, with the mobile phone segment first in line, already commencing from the earliest years of the 2000s, the first design wins for MEMS-based RF passives have started to be announced just in late 2014. Beyond the disappointment of all the most flattering market forecasts and, on the other hand, the effective employment of RF-MEMS in niche applications (like in very specific space and defence scenarios), there were crucial aspects, not fully considered since the beginning, that impaired the success of such a technology in large-market and consumer applications. Quite unexpectedly, the context has changed rather significantly in recent years. The smartphones market segment started to generate a factual need for highly reconfigurable and high-performance RF passive networks, and this circumstance is increasing the momentum of RF-MEMS technology that was expected to take place more than one decade ago. On a broader landscape, the Internet of Things (IoT) and the even wider paradigm of the Internet of Everything (IoE) seem to be potential fields of exploitation for high-performance and highly reconfigurable passive components in RF-MEMS technology. This work frames the current state of RF-MEMS market exploitation, analysing the main reasons impairing in past years the proper employment of Microsystem technology based RF passive components. Moreover, highlights on further expansion of RF-MEMS solutions in mobile and telecommunication systems will be briefly provided and discussed.
RF-MEMS for High-Performance and Widely Reconfigurable Passive Components - A Review With Focus on Future Telecommunications, Internet of Things (IoT) and 5G Applications
Iannacci, Jacopo
2017-01-01
Abstract
Since its first discussions in literature during late ‘90s, RF-MEMS technology (i.e. Radio Frequency MicroElectroMechanical-Systems) has been showing uncommon potential in the realisation of high-performance and widely reconfigurable RF passives for radio and telecommunication systems. Nevertheless, against the most confident forecasts sparkling around the successful exploitation of RF-MEMS technology in mass-market applications, with the mobile phone segment first in line, already commencing from the earliest years of the 2000s, the first design wins for MEMS-based RF passives have started to be announced just in late 2014. Beyond the disappointment of all the most flattering market forecasts and, on the other hand, the effective employment of RF-MEMS in niche applications (like in very specific space and defence scenarios), there were crucial aspects, not fully considered since the beginning, that impaired the success of such a technology in large-market and consumer applications. Quite unexpectedly, the context has changed rather significantly in recent years. The smartphones market segment started to generate a factual need for highly reconfigurable and high-performance RF passive networks, and this circumstance is increasing the momentum of RF-MEMS technology that was expected to take place more than one decade ago. On a broader landscape, the Internet of Things (IoT) and the even wider paradigm of the Internet of Everything (IoE) seem to be potential fields of exploitation for high-performance and highly reconfigurable passive components in RF-MEMS technology. This work frames the current state of RF-MEMS market exploitation, analysing the main reasons impairing in past years the proper employment of Microsystem technology based RF passive components. Moreover, highlights on further expansion of RF-MEMS solutions in mobile and telecommunication systems will be briefly provided and discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.