We have recently proposed and demonstrated, by means of simulation, the benefits of a simple yet effective cognitive technique to enhance stateless Path Computation Element algorithms with the aim of reducing the connection blocking probability when relying on a potentially non-up-to-date traffic engineering database. In this paper, we employ that technique, called elapsed time matrix (ETM), in the framework of the CHRON (Cognitive Heterogeneous Reconfigurable Optical Network) architecture and, more importantly, validate and analyze its performance in an emulation environment (rather than in a simulation environment) supporting impairment-aware lightpath establishment. Not only dynamic lightpath establishment on demand has been studied, but also restoration processes when facing optical link failures. Emulation results demonstrate that ETM reduces the blocking probability when establishing lightpaths on demand, and increases the percentage of successful restorations in case of optical link failure. Moreover, the use of that technique has little impact on lightpath setup time and lightpath restoration time, respectively.
Experimental assessment of a cognitive mechanism to reduce the impact of outdated TEDs in optical networks
Siracusa, Domenico;Francescon, Antonio;Salvadori, Elio;
2016-01-01
Abstract
We have recently proposed and demonstrated, by means of simulation, the benefits of a simple yet effective cognitive technique to enhance stateless Path Computation Element algorithms with the aim of reducing the connection blocking probability when relying on a potentially non-up-to-date traffic engineering database. In this paper, we employ that technique, called elapsed time matrix (ETM), in the framework of the CHRON (Cognitive Heterogeneous Reconfigurable Optical Network) architecture and, more importantly, validate and analyze its performance in an emulation environment (rather than in a simulation environment) supporting impairment-aware lightpath establishment. Not only dynamic lightpath establishment on demand has been studied, but also restoration processes when facing optical link failures. Emulation results demonstrate that ETM reduces the blocking probability when establishing lightpaths on demand, and increases the percentage of successful restorations in case of optical link failure. Moreover, the use of that technique has little impact on lightpath setup time and lightpath restoration time, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.