RF MEMS based switch matrices have several advantages compared to the mechanical or solid-state switch based ones for space applications. They are compact, light and less lossy with a high linearity up to high frequency. In this work, a 12 × 12 switch matrix with RF MEMS and LTCC technologies is presented based on the planar Beneš network. The simulated performance of the 12 × 12 switch matrix is below -12 dB IL (Insertion Loss) up to C band and -15 dB RL (Return Loss) up to Ku band. Moreover, it has a good isolation better than -50 dB. A 4 × 4 switch matrix with the same design process and technologies is fabricated and measured to verify the 12 × 12 switch matrix design process. The measured performance agrees very well to the simulations.
Design of RF MEMS based switch matrix for space applications
Margesin, Benno;
2013-01-01
Abstract
RF MEMS based switch matrices have several advantages compared to the mechanical or solid-state switch based ones for space applications. They are compact, light and less lossy with a high linearity up to high frequency. In this work, a 12 × 12 switch matrix with RF MEMS and LTCC technologies is presented based on the planar Beneš network. The simulated performance of the 12 × 12 switch matrix is below -12 dB IL (Insertion Loss) up to C band and -15 dB RL (Return Loss) up to Ku band. Moreover, it has a good isolation better than -50 dB. A 4 × 4 switch matrix with the same design process and technologies is fabricated and measured to verify the 12 × 12 switch matrix design process. The measured performance agrees very well to the simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.