This paper presents an ultra-thin bendable silicon based tactile sensor, in a piezoelectric capacitor configuration, realized by wet anisotropic etching as post-processing steps. The device is fabricated over bulk silicon, which is thinned down to 35 μm from an original thickness of 636 μm. Dicing of thin membrane is achieved by low cost novel technique of Dicing before Etching. The piezoelectric capacitor is composed of polyvinylidene fluoride trifluoroethylene (PVDF-TrFE), which present an attractive avenue for tactile sensing as they respond to dynamic contact events (which is critical for robotic tasks), easy to fabricate at low cost and are inherently flexible. The sensor exhibits enhanced piezoelectric properties, thanks to the optimization of the poling procedure. The sensor capacitive behaviour is confirmed using impedance analysis and the electro-mechanical characterization is done using TIRA shaker setup.

Ultra-Thin Silicon based Piezoelectric Capacitive Tactile Sensor

Giacomozzi, Flavio;Lorenzelli, Leandro;Dahiya, Ravinder Singh
2016-01-01

Abstract

This paper presents an ultra-thin bendable silicon based tactile sensor, in a piezoelectric capacitor configuration, realized by wet anisotropic etching as post-processing steps. The device is fabricated over bulk silicon, which is thinned down to 35 μm from an original thickness of 636 μm. Dicing of thin membrane is achieved by low cost novel technique of Dicing before Etching. The piezoelectric capacitor is composed of polyvinylidene fluoride trifluoroethylene (PVDF-TrFE), which present an attractive avenue for tactile sensing as they respond to dynamic contact events (which is critical for robotic tasks), easy to fabricate at low cost and are inherently flexible. The sensor exhibits enhanced piezoelectric properties, thanks to the optimization of the poling procedure. The sensor capacitive behaviour is confirmed using impedance analysis and the electro-mechanical characterization is done using TIRA shaker setup.
File in questo prodotto:
File Dimensione Formato  
eurosensors.pdf

solo utenti autorizzati

Descrizione: articolo pubblicato
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 347.24 kB
Formato Adobe PDF
347.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/308660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact