We investigate the photon detection efficiency (PDE) and the dynamic range for digital silicon photomultipliers (dSiPMs) over a selection of design parameters: dSiPM unit cell dead time, PDE, unit cell area and fill factor, number of cells, and total dSiPM active area. Two receiver scaling scenarios are con-sidered: varying the number of cells for 1) a fixed unit cell area or 2) a fixed total dSiPM area. Theoretical and simulated results are confirmed with experimental data from a selection of dSiPMs realised on a test chip in130-nm CMOS process.
Analysis of Photon Detection Efficiency and Dynamic Range in SPAD-Based Visible Light Receivers
Parmesan, Luca;
2016-01-01
Abstract
We investigate the photon detection efficiency (PDE) and the dynamic range for digital silicon photomultipliers (dSiPMs) over a selection of design parameters: dSiPM unit cell dead time, PDE, unit cell area and fill factor, number of cells, and total dSiPM active area. Two receiver scaling scenarios are con-sidered: varying the number of cells for 1) a fixed unit cell area or 2) a fixed total dSiPM area. Theoretical and simulated results are confirmed with experimental data from a selection of dSiPMs realised on a test chip in130-nm CMOS process.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.