We propose a generic online multi-target track-before-detect (MT-TBD) that is applicable on confidence maps used as observations. The proposed tracker is based on particle filtering and automatically initializes tracks. The main novelty is the inclusion of the target ID into the particle state, enabling the algorithm to deal with unknown and large number of targets. To overcome the problem of mixing IDs of targets close to each other, we propose a probabilistic model of target birth and death based on a Markov Random Field applied to the particle IDs. Each particle ID is managed using the information carried by neighboring particles. The assignment of the IDs to the targets is performed using Mean-Shift clustering and supported by a Gaussian Mixture Model. We also show that the computational complexity of MT-TBD is proportional only to the number of particles. To compare our method with recent state-of-the-art works, we include a postprocessing stage suited for multi-person tracking. We validate the method on real-world and crowded scenarios, and demonstrate its robustness in scenes presenting different perspective views and targets very close to each other.

Multi-target tracking on confidence maps: An application to people tracking

Poiesi, Fabio;
2013-01-01

Abstract

We propose a generic online multi-target track-before-detect (MT-TBD) that is applicable on confidence maps used as observations. The proposed tracker is based on particle filtering and automatically initializes tracks. The main novelty is the inclusion of the target ID into the particle state, enabling the algorithm to deal with unknown and large number of targets. To overcome the problem of mixing IDs of targets close to each other, we propose a probabilistic model of target birth and death based on a Markov Random Field applied to the particle IDs. Each particle ID is managed using the information carried by neighboring particles. The assignment of the IDs to the targets is performed using Mean-Shift clustering and supported by a Gaussian Mixture Model. We also show that the computational complexity of MT-TBD is proportional only to the number of particles. To compare our method with recent state-of-the-art works, we include a postprocessing stage suited for multi-person tracking. We validate the method on real-world and crowded scenarios, and demonstrate its robustness in scenes presenting different perspective views and targets very close to each other.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/307256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact