In this work, a compact set-up and three different methods to measure the Photo-Detection Efficiency (PDE) of Silicon Photomultipliers (SiPMs) and Single-Photon Avalanche Diodes (SPADs) are presented. The methods, based on either continuous or pulsed light illumination, are discussed in detail and compared in terms of measurement precision and time. For the SiPM, these methods have the feature of minimizing the effect of both the primary and correlated noise on the PDE estimation. The PDE of SiPMs (produced at FBK, Trento, Italy) was measured in a range from UV to NIR, obtaining similar results with all the methods. Furthermore, the advantages of measuring, when possible, the PDE of SPADs (of the same technology and with the same layout of a single SiPM cell) instead of larger devices are also discussed and a direct comparison between measurement results is shown. Using a SPAD, it is possible to reduce the measurement complexity and uncertainty since the correlated noise sources are reduced with respect to the SiPM case.

Set-up and methods for SiPM Photo-Detection Efficiency measurements

Zappala’, Gaetano;Acerbi, Fabio;Ferri, Alessandro;Gola, Alberto Giacomo;Paternoster, Giovanni;Zorzi, Nicola;Piemonte, Claudio
2016-01-01

Abstract

In this work, a compact set-up and three different methods to measure the Photo-Detection Efficiency (PDE) of Silicon Photomultipliers (SiPMs) and Single-Photon Avalanche Diodes (SPADs) are presented. The methods, based on either continuous or pulsed light illumination, are discussed in detail and compared in terms of measurement precision and time. For the SiPM, these methods have the feature of minimizing the effect of both the primary and correlated noise on the PDE estimation. The PDE of SiPMs (produced at FBK, Trento, Italy) was measured in a range from UV to NIR, obtaining similar results with all the methods. Furthermore, the advantages of measuring, when possible, the PDE of SPADs (of the same technology and with the same layout of a single SiPM cell) instead of larger devices are also discussed and a direct comparison between measurement results is shown. Using a SPAD, it is possible to reduce the measurement complexity and uncertainty since the correlated noise sources are reduced with respect to the SiPM case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/305953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact