Negative differential resistance (NDR), for which the current is a decreasing function of the voltage, has been observed in the current–voltage curves of several types of structures. We measured tunnelling current and NDR by illuminating large area heterojunction obtained by growing Multi Wall Carbon Nanotubes on the surface of n-doped Silicon substrate. In the absence of light, the current flow is null until a junction threshold of about 2.4 V is reached, beyond which the dark current flows at room temperature with a very low intensity of few nA. When illuminated, a current of tens nA is observed at a drain voltage of about 1.5 V. At higher voltage the current intensity decreases according to a negative resistance of the order of MΩ. In the following we report details of tunneling photodiode realized and negative resistance characteristics.
Light induced tunnel effect in CNT-Si photodiode
Boscardin, Maurizio;Castrucci, Paola;Crivellari, Michele;
2016-01-01
Abstract
Negative differential resistance (NDR), for which the current is a decreasing function of the voltage, has been observed in the current–voltage curves of several types of structures. We measured tunnelling current and NDR by illuminating large area heterojunction obtained by growing Multi Wall Carbon Nanotubes on the surface of n-doped Silicon substrate. In the absence of light, the current flow is null until a junction threshold of about 2.4 V is reached, beyond which the dark current flows at room temperature with a very low intensity of few nA. When illuminated, a current of tens nA is observed at a drain voltage of about 1.5 V. At higher voltage the current intensity decreases according to a negative resistance of the order of MΩ. In the following we report details of tunneling photodiode realized and negative resistance characteristics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.