Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The noise equivalent power of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.

Photocurrent-based detection of terahertz radiation in graphene

Tredicucci, Alessandro;
2013

Abstract

Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The noise equivalent power of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/273619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact