A novel and unconventional approach to impedance microbiology has been under investigation. In our approach, solution conductivity variations are generated from bacteriophage lyses of infected host cells and the consequent release of conductive endoplasmic material. To sensitively detect the lysis, low conductive growth media have been developed. A microchip has been fabricated to perform the analysis. The microchip is made of two bare gold electrodes and PDMS microchamber of 36 nL volume. Escherichia coli and selective phages T4 have been used as case study. Proof-of-principle experiments are here presented and discussed. The method was characterised in a wide range between 104 and 108 CFU/mL, where linear relation was found between conductivity variation and cell concentration in a log10 vs. log10 plot. The method is suited to integration with sample preparation based on phage-functionalised magnetic beads. It has a potential detection limit below 1 CFU/chamber and a total assay time of less than 1 hour.

An unconventional approach to impedance microbiology: detection of culture media conductivity variations due to bacteriophage generated lyses of host bacteria

Mortari, Alessia;Adami, Andrea;Lorenzelli, Leandro
2015-01-01

Abstract

A novel and unconventional approach to impedance microbiology has been under investigation. In our approach, solution conductivity variations are generated from bacteriophage lyses of infected host cells and the consequent release of conductive endoplasmic material. To sensitively detect the lysis, low conductive growth media have been developed. A microchip has been fabricated to perform the analysis. The microchip is made of two bare gold electrodes and PDMS microchamber of 36 nL volume. Escherichia coli and selective phages T4 have been used as case study. Proof-of-principle experiments are here presented and discussed. The method was characterised in a wide range between 104 and 108 CFU/mL, where linear relation was found between conductivity variation and cell concentration in a log10 vs. log10 plot. The method is suited to integration with sample preparation based on phage-functionalised magnetic beads. It has a potential detection limit below 1 CFU/chamber and a total assay time of less than 1 hour.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/248420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact