The paper presents a real-time vision system to compute traffic parameters by analyzing monocular image sequences coming from pole-mounted video cameras at urban crossroads. The system uses a combination of segmentation and motion information to localize and track moving objects on the road plane, utilizing a robust background updating, and a feature-based tracking method. It is able to describe the path of each detected vehicle, to estimate its speed and to classify it into seven categories. The classification task relies on a model-based matching technique refined by a feature-based one for distinguishing between classes having similar models, like bicycles and motorcycles. The system is flexible with respect to the intersection geometry and the camera position. Experimental results demonstrate robust, real-time vehicle detection, tracking and classification over several hours of videos taken under different illumination conditions. The system is presently under trial in Trento, a 100,000-people town in northern Italy.

A computer vision system for the detection and classification of vehicles at urban road intersections

Messelodi, Stefano;Modena, Carla Maria;Zanin, Michele
2005-01-01

Abstract

The paper presents a real-time vision system to compute traffic parameters by analyzing monocular image sequences coming from pole-mounted video cameras at urban crossroads. The system uses a combination of segmentation and motion information to localize and track moving objects on the road plane, utilizing a robust background updating, and a feature-based tracking method. It is able to describe the path of each detected vehicle, to estimate its speed and to classify it into seven categories. The classification task relies on a model-based matching technique refined by a feature-based one for distinguishing between classes having similar models, like bicycles and motorcycles. The system is flexible with respect to the intersection geometry and the camera position. Experimental results demonstrate robust, real-time vehicle detection, tracking and classification over several hours of videos taken under different illumination conditions. The system is presently under trial in Trento, a 100,000-people town in northern Italy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2410
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact