Since the demonstration of optical gain in silicon nanocrystals, in the last few years several papers appeared in the literature reporting gain measurements in silicon nanocrystals embedded in a silica matrix produced by different techniques. However, it is still unclear which are the structural, physical and chemical factors that contribute to enhance photoluminescence and gain in this type of samples. In particular, the presence and the role of nitrogen in the SiO2 matrix are in fact supposed to be essential factors in understanding the gain mechanism. In fact it is possible to obtain similar samples with very different nitrogen content in the silica matrix changing one of the precursor gases used in the deposition process, thus evidencing the structural and chemical differences introduced by the presence of nitrogen. In this paper SIMS and XPS analysis of two series of similar samples, but with a very different nitrogen content, will be presented and compared. The data collected at different annealing temperatures, together with ellipsometric measurements, give important information on the role played by the nitrogen present in the matrix in the process of silicon nanocrystal formation. Moreover, we demostrate that the annealing process causes always some oxidation of the sample surface and that nitrogen is incorporated in the material from the annealing atmosphere in nitrogen free samples
XPS and SIMS investigation on the role of Nitrogen in Si nanocrystals formation
Mulloni, Viviana;Bellutti, Pierluigi;Vanzetti, Lia Emanuela
2005-01-01
Abstract
Since the demonstration of optical gain in silicon nanocrystals, in the last few years several papers appeared in the literature reporting gain measurements in silicon nanocrystals embedded in a silica matrix produced by different techniques. However, it is still unclear which are the structural, physical and chemical factors that contribute to enhance photoluminescence and gain in this type of samples. In particular, the presence and the role of nitrogen in the SiO2 matrix are in fact supposed to be essential factors in understanding the gain mechanism. In fact it is possible to obtain similar samples with very different nitrogen content in the silica matrix changing one of the precursor gases used in the deposition process, thus evidencing the structural and chemical differences introduced by the presence of nitrogen. In this paper SIMS and XPS analysis of two series of similar samples, but with a very different nitrogen content, will be presented and compared. The data collected at different annealing temperatures, together with ellipsometric measurements, give important information on the role played by the nitrogen present in the matrix in the process of silicon nanocrystal formation. Moreover, we demostrate that the annealing process causes always some oxidation of the sample surface and that nitrogen is incorporated in the material from the annealing atmosphere in nitrogen free samplesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.