In this work, we present a microdevice coated with titanium dioxide for cells and particles separation and handling. The microsystem consists of a pair of planar interdigitated gold micro-electrode arrays on a quartz substrate able to generate a traveling electric completed with a microfabricated three-dimensional glass structure for cell confinement. Dielectrophoretic forces were exploited for both vertical and lateral cell motions. In order to provide a biocompatible passivation layer to the electrodes a highly biocompatible nanostructured titanium dioxide film was deposited by supersonic cluster beam deposition (SCBD) on the electrode array. The dielectrophoretic effects of the chip were initially tested using polystyrene beads. To test the biocompatibility and capability of dielectrophoretic cell movement of the device, four cell lines (NIH3T3, SH-SY5Y, MDCK and PC12) were used. Separation of beads from SH-SY5Y cells was also obtained.
A dielectrophoresis-based microdevice coated with ns-TiO2 for separation of particles and cells
Morganti, Elisa;Collini, Cristian;Cunaccia, Romina;Odorizzi, Lara;Adami, Andrea;Lorenzelli, Leandro;
2011-01-01
Abstract
In this work, we present a microdevice coated with titanium dioxide for cells and particles separation and handling. The microsystem consists of a pair of planar interdigitated gold micro-electrode arrays on a quartz substrate able to generate a traveling electric completed with a microfabricated three-dimensional glass structure for cell confinement. Dielectrophoretic forces were exploited for both vertical and lateral cell motions. In order to provide a biocompatible passivation layer to the electrodes a highly biocompatible nanostructured titanium dioxide film was deposited by supersonic cluster beam deposition (SCBD) on the electrode array. The dielectrophoretic effects of the chip were initially tested using polystyrene beads. To test the biocompatibility and capability of dielectrophoretic cell movement of the device, four cell lines (NIH3T3, SH-SY5Y, MDCK and PC12) were used. Separation of beads from SH-SY5Y cells was also obtained.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.