In this paper, the dynamic behavior of electrostatically actuated radio frequency-microelectromechanical system (RF-MEMS) switches is analyzed using energy considerations. An analytical model for bridge-type RF-MEMS switches is proposed and the time evolution of the system total energy is calculated numerically. Switch actuation, release times, and damped release response are derived from energy analysis with focus on the effect of increasing the actuation voltage on the RF-MEMS dynamic behavior. The dynamic and RF characteristics of different RFMEMS ohmic-contact switches have been measured using an experimental set-up based on microwave instrumentation. The measured results show a good agreement with simulations, thus validating the proposed analytical model. It is shown (theoretically and experimentally) that the damped release response increases the effective time to reach the RF/microwave OFF-state switch isolation (up to three natural periods of the mechanical system).

Analytical Energy Model for the Dynamic Behavior of RF MEMS Switches Under Increased Actuation Voltage

Giacomozzi, Flavio;Colpo, Sabrina
2014

Abstract

In this paper, the dynamic behavior of electrostatically actuated radio frequency-microelectromechanical system (RF-MEMS) switches is analyzed using energy considerations. An analytical model for bridge-type RF-MEMS switches is proposed and the time evolution of the system total energy is calculated numerically. Switch actuation, release times, and damped release response are derived from energy analysis with focus on the effect of increasing the actuation voltage on the RF-MEMS dynamic behavior. The dynamic and RF characteristics of different RFMEMS ohmic-contact switches have been measured using an experimental set-up based on microwave instrumentation. The measured results show a good agreement with simulations, thus validating the proposed analytical model. It is shown (theoretically and experimentally) that the damped release response increases the effective time to reach the RF/microwave OFF-state switch isolation (up to three natural periods of the mechanical system).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/239223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact