Wearable gesture recognition enables context aware applications and unobtrusive HCI. It is realized by applying machine learning techniques to data from on-body sensor nodes. We present an gesture recognition system minimizing power while maintaining a run-time application defined performance target through dynamic sensor selection. Compared to the non managed approach optimized for recognition accuracy (95% accuracy), our technique can extend network lifetime by 4 times with accuracy >90% and by 9 times with accuracy >70%. We characterize the approach and outline its applicability to other scenarios.
Network-Level Power-Performance Trade-Off in Wearable Activity Recognition: A Dynamic Sensor Selection Approach
Farella, Elisabetta;
2012-01-01
Abstract
Wearable gesture recognition enables context aware applications and unobtrusive HCI. It is realized by applying machine learning techniques to data from on-body sensor nodes. We present an gesture recognition system minimizing power while maintaining a run-time application defined performance target through dynamic sensor selection. Compared to the non managed approach optimized for recognition accuracy (95% accuracy), our technique can extend network lifetime by 4 times with accuracy >90% and by 9 times with accuracy >70%. We characterize the approach and outline its applicability to other scenarios.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.