This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.

Treatment Effect Estimation with Covariate Measurement Error

Battistin, Erich;
2014-01-01

Abstract

This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/214816
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact