Few micron-thick one-dimensional optical superlattices were designed and grown, in which an optimized choice of external dielectric layers allows the formation of a wide and high transmission miniband of coupled cavity states. In such structures a reduction in light group velocity and minimal line shape distortion of propagating optical signal was observed. Group velocity reduction by a factor of 5, obtained both from phase (white-light interferometry) and from time-resolved measurements, is in reasonably good agreement with those calculated through a transfer matrix approach. Time-resolved experiments confirm the minimal line shape distortion for optical pulses of 1.8 THz bandwidth at lambda=1.5 um wavelength.

Wide-band transmission of non-distorted slow waves in 1D optical superlattices

Ghulinyan, Mher;
2006

Abstract

Few micron-thick one-dimensional optical superlattices were designed and grown, in which an optimized choice of external dielectric layers allows the formation of a wide and high transmission miniband of coupled cavity states. In such structures a reduction in light group velocity and minimal line shape distortion of propagating optical signal was observed. Group velocity reduction by a factor of 5, obtained both from phase (white-light interferometry) and from time-resolved measurements, is in reasonably good agreement with those calculated through a transfer matrix approach. Time-resolved experiments confirm the minimal line shape distortion for optical pulses of 1.8 THz bandwidth at lambda=1.5 um wavelength.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/19783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact