We consider a Bose-Einstein condensate confined in a “Mexican hat” potential, with a quartic minus quadratic radial dependence. We find conditions under which the ground state is annular in shape, with a hole in the center of the condensate. Rotation leads to the appearance of stable multiply-quantized vortices, giving rise to a superfluid flow around the ring. The collective modes of the system are explored both numerically and analytically using the Gross-Pitaevskii and hydrodynamic equations. Potential experimental schemes to detect vorticity are proposed and evaluated, which include measuring the splitting of collective mode frequencies, observing expansion following release from the trap, and probing the momentum distribution of the condensate.
Vortex signatures in annular Bose-Einstein condensates
Cozzini, Marco;
2006-01-01
Abstract
We consider a Bose-Einstein condensate confined in a “Mexican hat” potential, with a quartic minus quadratic radial dependence. We find conditions under which the ground state is annular in shape, with a hole in the center of the condensate. Rotation leads to the appearance of stable multiply-quantized vortices, giving rise to a superfluid flow around the ring. The collective modes of the system are explored both numerically and analytically using the Gross-Pitaevskii and hydrodynamic equations. Potential experimental schemes to detect vorticity are proposed and evaluated, which include measuring the splitting of collective mode frequencies, observing expansion following release from the trap, and probing the momentum distribution of the condensate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.