We show that the requirement that a SU(N) Yang-Mills action (gauge fixed in a linear covariant gauge) is invariant under both the Becchi-Rouet-Stora-Tyutin (BRST) symmetry as well as the corresponding anti-BRST symmetry, automatically implies that the theory is quantized in the (linear covariant) background field method (BFM) gauge. Thus, the BFM and its associated background Ward identity naturally emerge from anti-BRST invariance of the theory and need not be introduced as an ad hoc gauge fixing procedure. Treating ghosts and antighosts on an equal footing, as required by a BRST-anti-BRST invariant formulation of the theory, gives also rise to a local antighost equation that together with the local ghost equation completely resolves the algebraic structure of the ghost sector for any value of the gauge fixing parameter. We finally prove that the background fields are stationary points of the background effective action obtained when the quantum fields are integrated out.

AntiBRST symmetry and Background Field Method

Binosi, Daniele;
2013-01-01

Abstract

We show that the requirement that a SU(N) Yang-Mills action (gauge fixed in a linear covariant gauge) is invariant under both the Becchi-Rouet-Stora-Tyutin (BRST) symmetry as well as the corresponding anti-BRST symmetry, automatically implies that the theory is quantized in the (linear covariant) background field method (BFM) gauge. Thus, the BFM and its associated background Ward identity naturally emerge from anti-BRST invariance of the theory and need not be introduced as an ad hoc gauge fixing procedure. Treating ghosts and antighosts on an equal footing, as required by a BRST-anti-BRST invariant formulation of the theory, gives also rise to a local antighost equation that together with the local ghost equation completely resolves the algebraic structure of the ghost sector for any value of the gauge fixing parameter. We finally prove that the background fields are stationary points of the background effective action obtained when the quantum fields are integrated out.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/194810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact