For the planned luminosity upgrade of the CERN LHC to the sLHC new radiation hard technologies for the tracking detectors are investigated. Corresponding to the luminosity increase, the radiation dose will be approximately a factor of ten higher than for the detectors currently installed in the LHC experiments. One option for radiation tolerant detectors are 3D silicon detectors with columnar electrodes penetrating into the silicon bulk. This article reports results of beam test measurements performed with 3D-DDTC (Double-Sided, Double Type Column) silicon strip detectors, where the columns do not pass through the detector completely. The devices were produced by IMB-CNM (Barcelona, Spain) and by FBK-irst (Trento, Italy). Important properties like space-resolved charge collection and efficiency are investigated.
Beam Test Measurements with 3D-DDTC Silicon Strip Detectors on n-type Substrate
Boscardin, Maurizio;Dalla Betta, Gian Franco;Ronchin, Sabina;Zorzi, Nicola
2010-01-01
Abstract
For the planned luminosity upgrade of the CERN LHC to the sLHC new radiation hard technologies for the tracking detectors are investigated. Corresponding to the luminosity increase, the radiation dose will be approximately a factor of ten higher than for the detectors currently installed in the LHC experiments. One option for radiation tolerant detectors are 3D silicon detectors with columnar electrodes penetrating into the silicon bulk. This article reports results of beam test measurements performed with 3D-DDTC (Double-Sided, Double Type Column) silicon strip detectors, where the columns do not pass through the detector completely. The devices were produced by IMB-CNM (Barcelona, Spain) and by FBK-irst (Trento, Italy). Important properties like space-resolved charge collection and efficiency are investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.