Correlated fluctuations of low-frequency fMRI signal have been suggested to reflect functional connectivity among the involved regions. However, large-scale correlations are especially prone to spurious global modulations induced by coherent physiological noise. Cardiac and respiratory rhythms are the most offending component, and a tailored preprocessing is needed in order to reduce their impact. Several approaches have been proposed in the literature, generally based on the use of physiological recordings acquired during the functional scans, or on the extraction of the relevant information directly from the images. In this paper, the performances of the denoising approach based on general linear fitting of global signals of noninterest extracted from the functional scans were assessed. Results suggested that this approach is sufficiently accurate for the preprocessing of functional connectivity data.

Images-based suppression of unwanted global signals in resting-state functional connectivity studies

Iacovella, Vittorio;
2009

Abstract

Correlated fluctuations of low-frequency fMRI signal have been suggested to reflect functional connectivity among the involved regions. However, large-scale correlations are especially prone to spurious global modulations induced by coherent physiological noise. Cardiac and respiratory rhythms are the most offending component, and a tailored preprocessing is needed in order to reduce their impact. Several approaches have been proposed in the literature, generally based on the use of physiological recordings acquired during the functional scans, or on the extraction of the relevant information directly from the images. In this paper, the performances of the denoising approach based on general linear fitting of global signals of noninterest extracted from the functional scans were assessed. Results suggested that this approach is sufficiently accurate for the preprocessing of functional connectivity data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/192813
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 21
social impact