Co-association matrix has been a useful tool in many clustering ensemble techniques as a similarity measure between objects. In this paper, we introduce the weighted-association matrix, which is more expressive than the traditional co-association as a similarity measure, in the sense that it integrates information from the set of partitions in the clustering ensemble as well as from the original data of object representations. The weighted-association matrix is the core of the two main contributions of this paper: a natural extension of the well-known evidence accumulation cluster ensemble method by using the weighted association matrix and a kernel based clustering ensemble method that uses a new data representation. These methods are compared with simple clustering algorithms as well as with other clustering ensemble algorithms on several datasets. The obtained results ratify the accuracy of the proposed algorithms.

Weighted association based methods for the combination of heterogeneous partitions

Vega Pons, Sandro;
2011-01-01

Abstract

Co-association matrix has been a useful tool in many clustering ensemble techniques as a similarity measure between objects. In this paper, we introduce the weighted-association matrix, which is more expressive than the traditional co-association as a similarity measure, in the sense that it integrates information from the set of partitions in the clustering ensemble as well as from the original data of object representations. The weighted-association matrix is the core of the two main contributions of this paper: a natural extension of the well-known evidence accumulation cluster ensemble method by using the weighted association matrix and a kernel based clustering ensemble method that uses a new data representation. These methods are compared with simple clustering algorithms as well as with other clustering ensemble algorithms on several datasets. The obtained results ratify the accuracy of the proposed algorithms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/189413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact