The combination of multiple clustering results (clustering ensemble) has emerged as an important procedure to improve the quality of clustering solutions. In this paper we propose a new cluster ensemble method based on kernel functions, which introduces the Partition Relevance Analysis step. This step has the goal of analyzing the set of partition in the cluster ensemble and extract valuable information that can improve the quality of the combination process. Besides, we propose a new similarity measure between partitions proving that it is a kernel function. A new consensus function is introduced using this similarity measure and based on the idea of finding the median partition. Related to this consensus function, some theoretical results that endorse the suitability of our methods are proven. Finally, we conduct a numerical experimentation to show the behavior of our method on several databases by making a comparison with simple clustering algorithms as well as to other cluster ensemble methods.

Weighted Partition Consensus via Kernels

Vega Pons, Sandro;
2010-01-01

Abstract

The combination of multiple clustering results (clustering ensemble) has emerged as an important procedure to improve the quality of clustering solutions. In this paper we propose a new cluster ensemble method based on kernel functions, which introduces the Partition Relevance Analysis step. This step has the goal of analyzing the set of partition in the cluster ensemble and extract valuable information that can improve the quality of the combination process. Besides, we propose a new similarity measure between partitions proving that it is a kernel function. A new consensus function is introduced using this similarity measure and based on the idea of finding the median partition. Related to this consensus function, some theoretical results that endorse the suitability of our methods are proven. Finally, we conduct a numerical experimentation to show the behavior of our method on several databases by making a comparison with simple clustering algorithms as well as to other cluster ensemble methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/189411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact