In this work, we report on a new development of Silicon Drift Detectors (SDDs) for gamma-ray spectroscopy with space science applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP). The final goal of the development is the realization of monolithic arrays of SDDs which will be assembled to readout large (2” and 3”) LaBr3(Ce) scintillators. We present here the results of the development of a single SDD prototype, with 8x8 mm^2 active area, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories. We discuss the design issues related to the specific use of this device as a photo-detector for scintillators. Then, we focus on the read-out electronics. Since this SDD does not include a front-end transistor on the silicon chip, we have adopted a CMOS charge preamplifier (CUBE) recently developed at Politecnico di Milano. This preamplifier has allowed the achievement of state-of-the-art noise performance using a SDD technology process without the integration of the FET (Field Effect Transistor) on the detector chip. A quantum efficiency of about 80% has been measured for the SDD at the emission wavelength band of LaBr3 (360–380 nm). First experimental measurements consisting of direct 55-Fe irradiation of the SDD without scintillator, have demonstrated energy resolution of 140 eV and 129 eV at -20C and -43C respectively. By coupling the SDD with a LaBr3(Ce) scintillator (9 mm diameter), we have measured energy resolution of 5.6% FWHM and 2.6% FWHM at 122 keV and 662 keV respectively.

Silicon Drift Detectors for Readout of Scintillators in Gamma-Ray Spectroscopy

Bellutti, Pierluigi;Boscardin, Maurizio;Ficorella, Francesco;Giacomini, Gabriele;Picciotto, Antonino;Piemonte, Claudio;Zorzi, Nicola;
2013

Abstract

In this work, we report on a new development of Silicon Drift Detectors (SDDs) for gamma-ray spectroscopy with space science applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP). The final goal of the development is the realization of monolithic arrays of SDDs which will be assembled to readout large (2” and 3”) LaBr3(Ce) scintillators. We present here the results of the development of a single SDD prototype, with 8x8 mm^2 active area, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories. We discuss the design issues related to the specific use of this device as a photo-detector for scintillators. Then, we focus on the read-out electronics. Since this SDD does not include a front-end transistor on the silicon chip, we have adopted a CMOS charge preamplifier (CUBE) recently developed at Politecnico di Milano. This preamplifier has allowed the achievement of state-of-the-art noise performance using a SDD technology process without the integration of the FET (Field Effect Transistor) on the detector chip. A quantum efficiency of about 80% has been measured for the SDD at the emission wavelength band of LaBr3 (360–380 nm). First experimental measurements consisting of direct 55-Fe irradiation of the SDD without scintillator, have demonstrated energy resolution of 140 eV and 129 eV at -20C and -43C respectively. By coupling the SDD with a LaBr3(Ce) scintillator (9 mm diameter), we have measured energy resolution of 5.6% FWHM and 2.6% FWHM at 122 keV and 662 keV respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/183810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact