In this paper we deepen Mundici's analysis on reducibility of the decision problem from infinite-valued Lukasiewicz logic L to a suitable m-valued Lukasiewicz logic Lm, where m only depends on the length of formulas to be proved. Using geometrical arguments we find a better upper bound for the leas integer m such that a formula is valid in L if and only if so is in Lm. We also reduce the notion of logical consequence in L to the same notion in a suitable finite set of finite-valued Lukasiewicz logics. Finally, we define an analytic and internal sequent calculus for infinite-valued Lukasiewicz logic

Finiteness in infinite-valued Lukasiewicz logic

2000-01-01

Abstract

In this paper we deepen Mundici's analysis on reducibility of the decision problem from infinite-valued Lukasiewicz logic L to a suitable m-valued Lukasiewicz logic Lm, where m only depends on the length of formulas to be proved. Using geometrical arguments we find a better upper bound for the leas integer m such that a formula is valid in L if and only if so is in Lm. We also reduce the notion of logical consequence in L to the same notion in a suitable finite set of finite-valued Lukasiewicz logics. Finally, we define an analytic and internal sequent calculus for infinite-valued Lukasiewicz logic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/1808
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact