Cu(II) binding to the alpha prion protein (alphaPrP) can be both intramolecular and intermolecular. X-ray absorption spectroscopy at the copper K-edge has been used to explore the site geometry under each binding mode using both insoluble polymeric Cu(II).alphaBoPrP-(24-242) (bovine PrP) complexes and soluble Cu(II) complexes of peptides containing one, two, and four copies of the octarepeat. Analysis of the extended region of the spectra using a multiple scattering approach revealed two types of sites differing in the number of His residues in the first coordination shell of Cu(II). Peptides containing one and two-octarepeat copies in sub-stoichiometric Cu(II) complexes showed the direct binding of a single His in accord with crystallographic intra-repeat geometry. Alternatively, the polymeric Cu(II).alphaBoPrP-(24-242) complex and Cu(II) in its soluble complex with a four-octarepeat peptide at half-site-occupancy showed Cu(II) directly bound to two His residues, consistent with an inter-repeat binding mode. Increasing the Cu(II) site occupancy from 0.5 to 0.75 in the peptide containing four octarepeats resulted in spectral features that are intermediate to those of the inter- and intra-repeat modes. The transition from His-Cu-His (inter-repeat) to Cu-His (intra-repeat) on increasing Cu(II) saturation offers a structural basis for the positive cooperativity of the cation binding process and explains the capacity of alphaPrP to participate in Cu(II)-mediated intermolecular interactions

Inter- and intra-octarepeat Cu(II) site geometries in the prion protein: implications in Cu(II) binding cooperativity and Cu(II)-mediated assemblies.

Potrich, Cristina;
2004

Abstract

Cu(II) binding to the alpha prion protein (alphaPrP) can be both intramolecular and intermolecular. X-ray absorption spectroscopy at the copper K-edge has been used to explore the site geometry under each binding mode using both insoluble polymeric Cu(II).alphaBoPrP-(24-242) (bovine PrP) complexes and soluble Cu(II) complexes of peptides containing one, two, and four copies of the octarepeat. Analysis of the extended region of the spectra using a multiple scattering approach revealed two types of sites differing in the number of His residues in the first coordination shell of Cu(II). Peptides containing one and two-octarepeat copies in sub-stoichiometric Cu(II) complexes showed the direct binding of a single His in accord with crystallographic intra-repeat geometry. Alternatively, the polymeric Cu(II).alphaBoPrP-(24-242) complex and Cu(II) in its soluble complex with a four-octarepeat peptide at half-site-occupancy showed Cu(II) directly bound to two His residues, consistent with an inter-repeat binding mode. Increasing the Cu(II) site occupancy from 0.5 to 0.75 in the peptide containing four octarepeats resulted in spectral features that are intermediate to those of the inter- and intra-repeat modes. The transition from His-Cu-His (inter-repeat) to Cu-His (intra-repeat) on increasing Cu(II) saturation offers a structural basis for the positive cooperativity of the cation binding process and explains the capacity of alphaPrP to participate in Cu(II)-mediated intermolecular interactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11582/15613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 16
social impact