We report developing a SnO2 thick-film gas sensor deposited by screen printing onto a micromachined dielectric stacked membrane equipped with an embedded polysilicon microheater and two resistors for temperature measurement. The microheaters were designed to enable an operating temperature of 400°C at about 30 mW power consumption. A newly developed scheme for temperature measurement was adopted for on-line adjustment of the film temperature through a conventional low-power feedback circuit. The electrical response of the prototypes to CO and CH4 is discussed, and their performance is compared to traditional devices fabricated via thick-film methods.

Gas-Sensing Device implemented on a Micromachined Membrane: a Combination of Thick-Film and VLSI Technologies

Guarnieri, Vittorio;Margesin, Benno;Giacomozzi, Flavio;Zen, Mario;Soncini, Giovanni;
2000-01-01

Abstract

We report developing a SnO2 thick-film gas sensor deposited by screen printing onto a micromachined dielectric stacked membrane equipped with an embedded polysilicon microheater and two resistors for temperature measurement. The microheaters were designed to enable an operating temperature of 400°C at about 30 mW power consumption. A newly developed scheme for temperature measurement was adopted for on-line adjustment of the film temperature through a conventional low-power feedback circuit. The electrical response of the prototypes to CO and CH4 is discussed, and their performance is compared to traditional devices fabricated via thick-film methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact