Superlinear-variation in short circuit photocurrent with increasing incident optical power has been observed in metal-insulator-semiconductor structures having a silicon rich oxinitride active layer containing silicon nanocrystals. A model has been elaborated where an internal gain mechanism explains the superlinear photovoltaic effect. The internal gain mechanism is due to secondary carrier generation SCG from sub-bandgap levels in the nanocrystal. SCG is caused by impact excitation from the photogenerated conduction band electrons. The sub-bandgap levels are associated to traps formed at the dielectric/Si-nanocrystals interface.
Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers
Pucker, Georg;Bellutti, Pierluigi
2009-01-01
Abstract
Superlinear-variation in short circuit photocurrent with increasing incident optical power has been observed in metal-insulator-semiconductor structures having a silicon rich oxinitride active layer containing silicon nanocrystals. A model has been elaborated where an internal gain mechanism explains the superlinear photovoltaic effect. The internal gain mechanism is due to secondary carrier generation SCG from sub-bandgap levels in the nanocrystal. SCG is caused by impact excitation from the photogenerated conduction band electrons. The sub-bandgap levels are associated to traps formed at the dielectric/Si-nanocrystals interface.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.