HERMES (High Energy Rapid Modular Ensemble of Satellites) Pathfinder is a space-borne mission based on a constellation of six nano-satellites flying in a low-Earth orbit (LEO). The 3U CubeSats, to be launched in early 2025, host miniaturized instruments with a hybrid Silicon Drift Detector/GAGG:Ce scintillator photodetector system, sensitive to X-rays and gamma-rays in a large energy band. HERMES will operate in conjunction with Australian Space Industry Responsive Intelligent Thermal (SpIRIT) 6U CubeSat, launched in December 2023. HERMES will probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs), ensuring a fast transient localization in a field of view of several steradians exploiting the triangulation technique. HERMES intrinsically modular transient monitoring experiment represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we outline the scientific case, development and programmatic status of the mission.

The HERMES (High Energy Rapid Modular Ensemble of Satellites) Pathfinder mission

Demenev, Evgeny;Bellutti, Pierluigi;Ficorella, Francesco;Pepponi, Giancarlo;Picciotto, Antonino;Zorzi, Nicola;
2024-01-01

Abstract

HERMES (High Energy Rapid Modular Ensemble of Satellites) Pathfinder is a space-borne mission based on a constellation of six nano-satellites flying in a low-Earth orbit (LEO). The 3U CubeSats, to be launched in early 2025, host miniaturized instruments with a hybrid Silicon Drift Detector/GAGG:Ce scintillator photodetector system, sensitive to X-rays and gamma-rays in a large energy band. HERMES will operate in conjunction with Australian Space Industry Responsive Intelligent Thermal (SpIRIT) 6U CubeSat, launched in December 2023. HERMES will probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs), ensuring a fast transient localization in a field of view of several steradians exploiting the triangulation technique. HERMES intrinsically modular transient monitoring experiment represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we outline the scientific case, development and programmatic status of the mission.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/352847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact