Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments using ground truth data, including 3D analyses and inference time.
Evaluating Monocular Depth Estimation methods
Nazanin PadkanMembro del Collaboration Group
;Pawel TrybalaMembro del Collaboration Group
;Roberto BattistiSoftware
;F. Remondino
Supervision
;C. Bergeret
2023-01-01
Abstract
Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments using ground truth data, including 3D analyses and inference time.File | Dimensione | Formato | |
---|---|---|---|
isprs-archives-XLVIII-1-W3-2023-137-2023.pdf
non disponibili
Licenza:
PUBBLICO - Creative Commons 3.6
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.