Neural Radiance Field methods are innovative solutions to derive 3D data from a set of oriented images. This paper introduces new real and synthetic image datasets - called NeRFBK - specifically designed for testing and comparing NeRF-based 3D reconstruction algorithms. More and more reconstruction algorithms and techniques are available nowadays, raising the need to evaluate and compare the quality of derived 3D products currently used in various domains and applications. However, gathering diverse data with precise ground truth is challenging and may not encompass all relevant applications. The NeRFBK dataset addresses this issue by providing multi-scale, indoor and outdoor datasets with high-resolution images and videos and camera parameters for testing and comparing NeRF-based algorithms. This paper presents the design and creation of the NeRFBK set of data, various examples and application scenarios, and highlights its potential for advancing the field of 3D reconstruction.

NeRFBK: a holistic dataset for benchmarking NeRF-based 3D reconstruction

Yan, Z.;Mazzacca, G.;Rigon, S.;Farella, E. M.;Trybala, P.;Remondino, F.
2023-01-01

Abstract

Neural Radiance Field methods are innovative solutions to derive 3D data from a set of oriented images. This paper introduces new real and synthetic image datasets - called NeRFBK - specifically designed for testing and comparing NeRF-based 3D reconstruction algorithms. More and more reconstruction algorithms and techniques are available nowadays, raising the need to evaluate and compare the quality of derived 3D products currently used in various domains and applications. However, gathering diverse data with precise ground truth is challenging and may not encompass all relevant applications. The NeRFBK dataset addresses this issue by providing multi-scale, indoor and outdoor datasets with high-resolution images and videos and camera parameters for testing and comparing NeRF-based algorithms. This paper presents the design and creation of the NeRFBK set of data, various examples and application scenarios, and highlights its potential for advancing the field of 3D reconstruction.
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLVIII-1-W3-2023-219-2023.pdf

accesso aperto

Licenza: PUBBLICO - Creative Commons 2.1
Dimensione 9.42 MB
Formato Adobe PDF
9.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/342369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact