The present paper shows possible ways to design monolithic Quantum Random Number Generators (QRNGs) in a standard CMOS technology. While all commercial QRNGs based on SPAD technology use an external light as main source of entropy, in the present implementation silicon-based photon sources are used. This approach allows the integration of monolithic QRNGs paving the way towards miniaturized and low-cost devices. Moreover, being the QRNG realized in a standard CMOS technology, in perspective, it can potentially be embedded in secure microprocessor. In the paper we show that the proposed approach is compact, produces a minimum event rate of about 1kHz, possibly extended in case of the implementation of multi-QRNGs working in parallel.

Towards low-cost monolithic QRNGs

Massari, Nicola;Zou, Yu;Moreno Garcia, Manuel;Parmesan, Luca;Tontini, Alessandro;Mazzucchi, Sonia;
2022

Abstract

The present paper shows possible ways to design monolithic Quantum Random Number Generators (QRNGs) in a standard CMOS technology. While all commercial QRNGs based on SPAD technology use an external light as main source of entropy, in the present implementation silicon-based photon sources are used. This approach allows the integration of monolithic QRNGs paving the way towards miniaturized and low-cost devices. Moreover, being the QRNG realized in a standard CMOS technology, in perspective, it can potentially be embedded in secure microprocessor. In the paper we show that the proposed approach is compact, produces a minimum event rate of about 1kHz, possibly extended in case of the implementation of multi-QRNGs working in parallel.
9781510651425
9781510651432
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/333230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact