Motor activity in physical and psychological stress exposure has been studied almost exclusively with self-assessment questionnaires and from reports that derive from human observer, such as verbal rating and simple descriptive scales. However, these methods are limited in objectively quantifying typical behaviour of stress. We propose to use accelerometer data from smartphones to objectively quantify stress levels. Used data was collected in real-world setting, from 29 employees in two different organisations over 5 weeks. To improve classification performance we propose to use intermediate models. These intermediate models represent the mood state of a person which is used to build the final stress prediction model. In particular, we obtained an accuracy of 78.2 % to classify stress levels.

Motor activity in physical and psychological stress exposure has been studied almost exclusively with self-assessment questionnaires and from reports that derive from human observer, such as verbal rating and simple descriptive scales. However, these methods are limited in objectively quantifying typical behaviour of stress. We propose to use accelerometer data from smartphones to objectively quantify stress levels. Used data was collected in real-world setting, from 29 employees in two different organisations over 5 weeks. To improve classification performance we propose to use intermediate models. These intermediate models represent the mood state of a person which is used to build the final stress prediction model. In particular, we obtained an accuracy of 78.2 % to classify stress levels.

Using Intermediate Models and Knowledge Learning to Improve Stress Prediction

Osmani, Venet
;
2017-01-01

Abstract

Motor activity in physical and psychological stress exposure has been studied almost exclusively with self-assessment questionnaires and from reports that derive from human observer, such as verbal rating and simple descriptive scales. However, these methods are limited in objectively quantifying typical behaviour of stress. We propose to use accelerometer data from smartphones to objectively quantify stress levels. Used data was collected in real-world setting, from 29 employees in two different organisations over 5 weeks. To improve classification performance we propose to use intermediate models. These intermediate models represent the mood state of a person which is used to build the final stress prediction model. In particular, we obtained an accuracy of 78.2 % to classify stress levels.
2017
Motor activity in physical and psychological stress exposure has been studied almost exclusively with self-assessment questionnaires and from reports that derive from human observer, such as verbal rating and simple descriptive scales. However, these methods are limited in objectively quantifying typical behaviour of stress. We propose to use accelerometer data from smartphones to objectively quantify stress levels. Used data was collected in real-world setting, from 29 employees in two different organisations over 5 weeks. To improve classification performance we propose to use intermediate models. These intermediate models represent the mood state of a person which is used to build the final stress prediction model. In particular, we obtained an accuracy of 78.2 % to classify stress levels.
978-3-319-49621-4
978-3-319-49622-1
File in questo prodotto:
File Dimensione Formato  
2016MaxhuniUsing.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 731.4 kB
Formato Adobe PDF
731.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/327950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact