The solar receiver is a critical component of concentrated solar power technology; it works as a heat exchanger, transforming the concentrated solar radiation into high-temperature heat. Volumetric receiver technologies, using air as a heat transfer fluid, are designed to reach higher temperatures than the current receiver technology, which is limited by material resistance and fluid instability. The higher temperature, up to 1200 K, could be used in high-temperature industrial processes or a high-temperature thermodynamic cycle. A correct radiation propagation is essential to develop their performances, reducing reflection and emission losses and promote the heat transfer to the fluid. In this study, the optical behaviour of a hierarchical volumetric receiver (HVR) developed in Bruno Kessler Foundation (FBK) has been studied using Monte Carlo ray tracing (MCRT) simulations. The simulations have been validated in an experimental setup that evaluates the light transmissivity of the HVR porous structure. Two different HVR structures are evaluated with MCRT simulations that use a real solar dish geometry to configure a complete concentrated solar power (CSP) plant. Results show that frontal and rear losses are, respectively, 12% and 3% of the incoming concentrated radiation. Inside the HVR, 15% of the incoming power is propagated trough the lateral void spaces. Therefore, the power spreading avoids the overconcentration of the centre of the focalized area. The HVR optical behaviour has been investigated, showing an optical efficiency of 85%.

Analysis of Radiation Propagation inside a Hierarchical Solar Volumetric Absorber

Pratticò, Luca;Bartali, Ruben;Crema, Luigi;
2020-01-01

Abstract

The solar receiver is a critical component of concentrated solar power technology; it works as a heat exchanger, transforming the concentrated solar radiation into high-temperature heat. Volumetric receiver technologies, using air as a heat transfer fluid, are designed to reach higher temperatures than the current receiver technology, which is limited by material resistance and fluid instability. The higher temperature, up to 1200 K, could be used in high-temperature industrial processes or a high-temperature thermodynamic cycle. A correct radiation propagation is essential to develop their performances, reducing reflection and emission losses and promote the heat transfer to the fluid. In this study, the optical behaviour of a hierarchical volumetric receiver (HVR) developed in Bruno Kessler Foundation (FBK) has been studied using Monte Carlo ray tracing (MCRT) simulations. The simulations have been validated in an experimental setup that evaluates the light transmissivity of the HVR porous structure. Two different HVR structures are evaluated with MCRT simulations that use a real solar dish geometry to configure a complete concentrated solar power (CSP) plant. Results show that frontal and rear losses are, respectively, 12% and 3% of the incoming concentrated radiation. Inside the HVR, 15% of the incoming power is propagated trough the lateral void spaces. Therefore, the power spreading avoids the overconcentration of the centre of the focalized area. The HVR optical behaviour has been investigated, showing an optical efficiency of 85%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/325147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact