This paper proposes a new approach, grounded in Satisfiability Modulo Theories (SMT), to study the transient of a Max-Plus Linear (MPL) system, that is the number of steps leading to its periodic regime. Differently from state-of-the-art techniques, our approach allows the analysis of periodic behaviors for subsets of initial states, as well as the characterization of sets of initial states exhibiting the same specific periodic behavior and transient. Our experiments show that the proposed technique dramatically outperforms state-of-the-art methods based on max-plus algebra computations for systems of large dimensions.
Computation of the Transient in Max-Plus Linear Systems via SMT-Solving
Cimatti, Alessandro;Micheli, Andrea;
2020-01-01
Abstract
This paper proposes a new approach, grounded in Satisfiability Modulo Theories (SMT), to study the transient of a Max-Plus Linear (MPL) system, that is the number of steps leading to its periodic regime. Differently from state-of-the-art techniques, our approach allows the analysis of periodic behaviors for subsets of initial states, as well as the characterization of sets of initial states exhibiting the same specific periodic behavior and transient. Our experiments show that the proposed technique dramatically outperforms state-of-the-art methods based on max-plus algebra computations for systems of large dimensions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.