Explainable AI aims at building intelligent systems that are able to provide a clear, and human understandable, justification of their decisions. This holds for both rule-based and data-driven methods. In management of chronic diseases, the users of such systems are patients that follow strict dietary rules to manage such diseases. After receiving the input of the intake food, the system performs reasoning to understand whether the users follow an unhealthy behaviour. Successively, the system has to communicate the results in a clear and effective way, that is, the output message has to persuade users to follow the right dietary rules. In this paper, we address the main challenges to build such systems: i) the natural language generation of messages that explain the reasoner inconsistency; ii) the effectiveness of such messages at persuading the users. Results prove that the persuasive explanations are able to reduce the unhealthy users’ behaviours.

Persuasive Explanation of Reasoning Inferences on Dietary Data

Ivan Donadello
;
Mauro Dragoni;Claudio Eccher
2019-01-01

Abstract

Explainable AI aims at building intelligent systems that are able to provide a clear, and human understandable, justification of their decisions. This holds for both rule-based and data-driven methods. In management of chronic diseases, the users of such systems are patients that follow strict dietary rules to manage such diseases. After receiving the input of the intake food, the system performs reasoning to understand whether the users follow an unhealthy behaviour. Successively, the system has to communicate the results in a clear and effective way, that is, the output message has to persuade users to follow the right dietary rules. In this paper, we address the main challenges to build such systems: i) the natural language generation of messages that explain the reasoner inconsistency; ii) the effectiveness of such messages at persuading the users. Results prove that the persuasive explanations are able to reduce the unhealthy users’ behaviours.
File in questo prodotto:
File Dimensione Formato  
Persuasive_Explanation_Reasoning_Inferences_Dietary_Data.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 475.9 kB
Formato Adobe PDF
475.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/319876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact