This work deals with non-native children’s speech and investigates both multi-task and transfer learning approaches to adapt a multi-language Deep Neural Network (DNN) to speakers, specifically children, learning a foreign language. The application scenario is characterized by young students learning English and German and reading sentences in these second-languages, as well as in their mother language. The paper analyses and discusses techniques for training effective DNN-based acoustic models starting from children’s native speech and performing adaptation with limited non-native audio material. A multi-lingual model is adopted as baseline, where a common phonetic lexicon, defined in terms of the units of the International Phonetic Alphabet (IPA), is shared across the three languages at hand (Italian, German and English); DNN adaptation methods based on transfer learning are evaluated on significant non-native evaluation sets. Results show that the resulting non-native models allow a significant improvement with respect to a mono-lingual system adapted to speakers of the target language.
Non-native children speech recognition through transfer learning
Marco Matassoni;Roberto Gretter;Daniele Falavigna;Diego Giuliani
2018-01-01
Abstract
This work deals with non-native children’s speech and investigates both multi-task and transfer learning approaches to adapt a multi-language Deep Neural Network (DNN) to speakers, specifically children, learning a foreign language. The application scenario is characterized by young students learning English and German and reading sentences in these second-languages, as well as in their mother language. The paper analyses and discusses techniques for training effective DNN-based acoustic models starting from children’s native speech and performing adaptation with limited non-native audio material. A multi-lingual model is adopted as baseline, where a common phonetic lexicon, defined in terms of the units of the International Phonetic Alphabet (IPA), is shared across the three languages at hand (Italian, German and English); DNN adaptation methods based on transfer learning are evaluated on significant non-native evaluation sets. Results show that the resulting non-native models allow a significant improvement with respect to a mono-lingual system adapted to speakers of the target language.File | Dimensione | Formato | |
---|---|---|---|
icassp2018-matassoni.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
101.78 kB
Formato
Adobe PDF
|
101.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.