We discuss an approach to the automatic expansion of domain-specific lexicons by means of term categorization, a novel task employing techniques from information retrieval and machine learning. Specifically, we view the expansion of such lexicons as a process of learning previously unknown associations between terms and domains (i.e. disciplines, or fields of activity). The process generates, for each ci in a set C = {c1, . . . , cm} of domains, a lexicon Li1, bootstrapping from an initial lexicon Li0 and a set of documents è given as input. The method is inspired by text categorization, the discipline concerned with labelling natural language texts with labels from a predefined set of domains, or categories. However, while text categorization deals with documents represented as vectors in a space of terms, we formulate the task of term categorization as one in which terms are (dually) represented as vectors in a space of documents, and in which terms (instead of documents) are labelled with domains. As a learning device we adopt a boosting-based method, since boosting (a) has demonstrated state-of-the-art effectiveness in a variety of text categorization applications, and (b) naturally allows for a form of “data cleaning”, thereby making the process of generating a lexicon an iteration of generate-and-test steps. We present the results of a number of experiments using a set of domain-specific lexicons called WordNetDomains (which actually consists of an extension of WordNet), and performed using the documents in the Reuters Corpus Volume I as “implicit” representations for our terms

Automatic Expansion of Domain-Specific Lexicons by Term Categorization

Lavelli, Alberto;Zanoli, Roberto
2003-01-01

Abstract

We discuss an approach to the automatic expansion of domain-specific lexicons by means of term categorization, a novel task employing techniques from information retrieval and machine learning. Specifically, we view the expansion of such lexicons as a process of learning previously unknown associations between terms and domains (i.e. disciplines, or fields of activity). The process generates, for each ci in a set C = {c1, . . . , cm} of domains, a lexicon Li1, bootstrapping from an initial lexicon Li0 and a set of documents è given as input. The method is inspired by text categorization, the discipline concerned with labelling natural language texts with labels from a predefined set of domains, or categories. However, while text categorization deals with documents represented as vectors in a space of terms, we formulate the task of term categorization as one in which terms are (dually) represented as vectors in a space of documents, and in which terms (instead of documents) are labelled with domains. As a learning device we adopt a boosting-based method, since boosting (a) has demonstrated state-of-the-art effectiveness in a variety of text categorization applications, and (b) naturally allows for a form of “data cleaning”, thereby making the process of generating a lexicon an iteration of generate-and-test steps. We present the results of a number of experiments using a set of domain-specific lexicons called WordNetDomains (which actually consists of an extension of WordNet), and performed using the documents in the Reuters Corpus Volume I as “implicit” representations for our terms
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/2455
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact