This paper addresses the problem of hands-free speech recognition in a noisy office environment. An array of six omnidirectional microphones and a corresponding time delay compensation module are used to provide a beamformed signal as input to a HMM-based recognizer. Training of HMMs is performed either using a clean speech database or using a filtered version of the same database. Filtering consists in a convolution with the acoustic impulse response between speaker and microphone, to reproduce the reverberation effect. Background noise is summed to provide the desired SNR. The paper shows that the new models trained on these data perform better than the baseline ones. Furthermore, the paper investigates on MLLR adaptation of the new models. It is shown that a further performance improvement is obtained, allowing to reach a 98.7% WRR in a connected digit recognition task, when the talker is at 1.5 m distance from the array

Training of HMM with filtered speech material for hands-free recognition

Giuliani, Diego;Matassoni, Marco;Omologo, Maurizio;Svaizer, Piergiorgio
1999

Abstract

This paper addresses the problem of hands-free speech recognition in a noisy office environment. An array of six omnidirectional microphones and a corresponding time delay compensation module are used to provide a beamformed signal as input to a HMM-based recognizer. Training of HMMs is performed either using a clean speech database or using a filtered version of the same database. Filtering consists in a convolution with the acoustic impulse response between speaker and microphone, to reproduce the reverberation effect. Background noise is summed to provide the desired SNR. The paper shows that the new models trained on these data perform better than the baseline ones. Furthermore, the paper investigates on MLLR adaptation of the new models. It is shown that a further performance improvement is obtained, allowing to reach a 98.7% WRR in a connected digit recognition task, when the talker is at 1.5 m distance from the array
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/1631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact