Robust RF MEMS capacitive shunt switches were fabricated on either silicon or quartz substrates. Most tested switches could handle hot switching up to at least 5.6 W at 15 GHz. However, the pull-in voltage of the switches fabricated on quartz had stronger power dependence than that on silicon. This is attributed by multi-physics finite-element analysis to greater self heating, thermal expansion mismatch, and impedance mismatch on quartz. These results show that the power-handling capacity of a switch is determined by not only its membrane design, but also its circuit environment.

Analysis of Power Capacity of RF MEMS Capacitive Shunt Switches Fabricated on Silicon or Quartz Substrates

Solazzi, Francesco;Faes, Alessandro;Mulloni, Viviana;Margesin, Benno
2010-01-01

Abstract

Robust RF MEMS capacitive shunt switches were fabricated on either silicon or quartz substrates. Most tested switches could handle hot switching up to at least 5.6 W at 15 GHz. However, the pull-in voltage of the switches fabricated on quartz had stronger power dependence than that on silicon. This is attributed by multi-physics finite-element analysis to greater self heating, thermal expansion mismatch, and impedance mismatch on quartz. These results show that the power-handling capacity of a switch is determined by not only its membrane design, but also its circuit environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/9968
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact