A system for automatic labeling and segmentation of speech signals starting from their corresponding text will be described. The system uses continuous Hidden Markov Models (HMM) to represent a predefined set of acoustic-phonetic units and pronunciation networks to allow different phonetic realizations of a given sentence. The system has been applied to an American (TIMIT) and an Italian (APASCI) speech database

Automatic Speech Labeling using Word Pronunciation Networks and Hidden Markov Models

Angelini, Bianca;Brugnara, Fabio;Giuliani, Diego;Falavigna, Giuseppe Daniele;Gretter, Roberto;Omologo, Maurizio
1995-01-01

Abstract

A system for automatic labeling and segmentation of speech signals starting from their corresponding text will be described. The system uses continuous Hidden Markov Models (HMM) to represent a predefined set of acoustic-phonetic units and pronunciation networks to allow different phonetic realizations of a given sentence. The system has been applied to an American (TIMIT) and an Italian (APASCI) speech database
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact