This paper describes an approach to product recommendation that combines in a novel way content- and ollaborative-based filtering techniques. The system helps the user to specify a query that filters out unwanted products in electronic catalogues (content-based). Moreover, if the query produces too many or no results, the system suggests useful query changes that save the gist of the original request. This process goes on iteratively till a reasonable number of products is selected. Then, the selected products are ranked exploiting a case base of recommendation sessions (collaborative-based). Among the user selected items the system ranks higher items that are similar to those selected by other users in similar sessions (twofold similarity). The approach has been applied to a web travel application and it has been evaluated with real users. The proposed approach: a) reduces dramatically the number of user queries, b) reduces the number of browsed products and c) the selected items are found first on the ranked list.
Product Recommendation with Interactive Query Management and Twofold Similarity
Ricci, Francesco;Venturini, Adriano;Mirzadeh, Nader;Blaas, Dennis;Nones, Mariano
2003-01-01
Abstract
This paper describes an approach to product recommendation that combines in a novel way content- and ollaborative-based filtering techniques. The system helps the user to specify a query that filters out unwanted products in electronic catalogues (content-based). Moreover, if the query produces too many or no results, the system suggests useful query changes that save the gist of the original request. This process goes on iteratively till a reasonable number of products is selected. Then, the selected products are ranked exploiting a case base of recommendation sessions (collaborative-based). Among the user selected items the system ranks higher items that are similar to those selected by other users in similar sessions (twofold similarity). The approach has been applied to a web travel application and it has been evaluated with real users. The proposed approach: a) reduces dramatically the number of user queries, b) reduces the number of browsed products and c) the selected items are found first on the ranked list.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.